This function plots the estimated potential cumulative incidence function, along with pointwise confidence intervals.
Arguments
- fit
A fitted object returned by the function
tteICE,surv.tteICE, orscr.tteICE.- decrease
A logical variable indicating the type of curve to display. If
decrease = FALSE(default), cumulative incidence functions (CIFs) are plotted. Ifdecrease = TRUE, survival functions are plotted instead.- conf.int
Confidence level for the pointwise confidence intervals If
conf.int = NULL, no confidence intervals are provided.- xlab
Label for the x-axis.
- xlim
A numeric vector of length 2 specifying the limits of the x-axis. If
xlim = NULL(default), the limits are determined automatically from the data.- ylim
A numeric vector of length 2 specifying the limits of the y-axis. Defaults to
ylim = c(0, 1).- plot.configs
A named
listof additional plot configurations. Common entries include:ylab: character, label for the y-axis (default:ylab=NULL, use the default label).main: character, title for the plot (default:main=NULL, use the default label).lty: line type for the curve (default:lty=1).lwd: line width for the curve (default:lwd=2).ci.lty: line type for confidence interval curves (default:ci.lty=5, ci.lwd=1.5).ci.lwd: line width for confidence interval curves (default:ci.lwd=1.5).legend: legend for the two group (default:legend=c('Treated','Control')).col: color of the curve for the two group (default:col=c('brown','darkcyan')).legend.cex: font size for the legend (default:legend.cex=0.9).show.p.value: whether to show the p-value between two groups (default:show.p.value=TRUE, show the p-value)
- ...
Additional graphical arguments passed to function
plot.defaultor functioncurve
Examples
## load data
data(bmt)
bmt = transform(bmt, d4=d2+d3)
A = as.numeric(bmt$group>1)
bmt$A = A
## simple model fitting and plotting
library(survival)
fit = tteICE(Surv(t2,d4,type = "mstate")~A, data=bmt)
plot_inc(fit)
## model fitting using competing risk data
fit1 = surv.tteICE(A, bmt$t2, bmt$d4, 'treatment')
## plot asymptotic confidence intervals based on explicit formulas
plot_inc(fit1, ylim=c(0,1),
plot.configs=list(legend=c('AML','ALL'), show.p.value=FALSE) )
## plot bootstrap confidence intervals
fit2 = surv.tteICE(A, bmt$t2, bmt$d4, 'treatment', nboot=50)
plot_inc(fit2, ylim=c(0,1),
plot.configs=list(legend=c('AML','ALL')))
## model fitting using semicompeting risk data
fit3 = scr.tteICE(A, bmt$t1, bmt$d1, bmt$t2, bmt$d2, "composite")
## plot asymptotic confidence intervals based on explicit formulas
plot_inc(fit3, ylim=c(0,1), plot.configs=list(add.null.line=FALSE))
## plot bootstrap confidence intervals
fit4 = scr.tteICE(A, bmt$t1, bmt$d1, bmt$t2, bmt$d2,
"composite", nboot=50) ##??
plot_inc(fit4, ylim=c(0,1),
plot.configs=list(lty=2, lwd=3, main="My title"))