This function plots the estimated treatment effect, defined as the difference in potential cumulative incidences under treated and control groups, along with pointwise confidence intervals.
Arguments
- fit
A fitted object returned by the function
tteICE,surv.tteICE, orscr.tteICE.- decrease
A logical value indicating the type of curve difference to display. If
decrease = FALSE(default), the difference in cumulative incidence functions (CIFs) is plotted. Ifdecrease = TRUE, the difference in survival functions is plotted instead.- conf.int
Confidence level for the pointwise confidence intervals If
conf.int = NULL, no confidence intervals are provided.- xlab
Label for the x-axis.
- ylim
A numeric vector of length 2 specifying the limits of the y-axis. Defaults to
ylim = c(-1, 1).- xlim
A numeric vector of length 2 specifying the limits of the x-axis. If
xlim = NULL(default), the limits are determined automatically from the data.- plot.configs
A named
listof additional plot configurations. Common entries include:ylab: character, label for the y-axis (default:ylab=NULL, use the default label).main: character, title for the plot (default:main=NULL, use the default label).lty: line type for effect curve (default:lty=1).lwd: line width for effect curve (default:lwd=2).col: line color for effect curve (default:col="black").add.null.line: logical, whether to draw a horizontal line at 0 (default:add.null.line=TRUE, add the null line).null.line.lty: line type for horizontal line at 0 (default:null.line.lty=2.ci.lty: line type for confidence interval curves (default:ci.lty=5).ci.lwd: line width for confidence interval curves (default:ci.lwd=1.5).ci.col: line color for confidence interval curves (default:ci.col="darkgrey").
- ...
Additional graphical arguments passed to function
plot.defaultor functioncurve
Examples
## Load data
data(bmt)
bmt = transform(bmt, d4=d2+d3)
A = as.numeric(bmt$group>1)
bmt$A = A
## simple model fitting and plotting
library(survival)
fit = tteICE(Surv(t2,d4,type = "mstate")~A, data=bmt)
plot_ate(fit)
## model fitting using competing risk data
fit1 = surv.tteICE(A, bmt$t2, bmt$d4, 'composite')
## Plot asymptotic confidence intervals based on explicit formulas
plot_ate(fit1, ylim=c(-0.4,0.4))
## Plot bootstrap confidence intervals
fit2 = surv.tteICE(A, bmt$t2, bmt$d4, 'natural', nboot=50) ## SE=0??
plot_ate(fit2, ylim=c(-0.4,0.4))
## Model with semicompeting risk data
fit3 = scr.tteICE(A, bmt$t1, bmt$d1, bmt$t2, bmt$d2, "composite")
## Plot asymptotic confidence intervals based on explicit formulas
plot_ate(fit3, ylim=c(-0.4,0.4),
plot.configs=list(add.null.line=FALSE))
## Plot bootstrap confidence intervals
fit4 = scr.tteICE(A, bmt$t1, bmt$d1, bmt$t2, bmt$d2,
"composite", nboot=50) ## SE=0??
plot_ate(fit4, ylim=c(-0.4,0.4),
plot.configs=list(add.null.line=FALSE, lty=2, main=""))